INSTALLATION INSTRUCTIONS

For Anchoring (*)S3, (*)S4, (*)S5, (*)SA2, (*)SA4, (*)S6, RSN13, RSG13, & RSG14 Air Conditioners and (*)T3, (*)T4, (*)T5, (*)T6, (*)SH2, (*)SH4, HRN13, HRG13, & HRG14 Heat Pump Models From 1.5 - 5 Ton

KIT CONTENTS

DESCRIPTION	QUANTITY
Base Mounting Bracket for models with metal base pan	8
Base Mounting Bracket for models with composite base pan	8
Tapcon [™] Concrete Screw 1/4" x 1-3/4"	8
Hex Head SM Screw #14 x 2"	8
Installation Instructions	1

ABOUT THE KIT

The extreme wind condition mounting kit is used to anchor splitsystem air conditioners and heat pumps.

This anchor system is designed to meet the requirements of Section 1620 of the Florida Building Code, 5th Edition (2014), regarding the wind resistance and anchoring requirements for mechanical equipment in Florida hurricane zones. This kit will secure these units to an adequately designed concrete base pad, metal frame or roof structure so that it can withstand a 3 second gust of a maximum wind speed of 180 MPH. Minimum concrete pad requirements are shown in the illustration.

The kit has been updated to include four additional base mounting brackets for use on units that have the composite base pan. These brackets can be identified by the number of holes in the base of the bracket. Composite base pan mounting brackets have 3 holes in the base.

INSTALLATION OF THE ANCHOR KIT ON SPLIT-SYSTEM AC/HP MODELS:

1. It is recommended that this kit be installed on the unit prior to connecting refrigerant lines and electrical wiring. It may be installed later if necessary.

- 2. Position the unit on the concrete pad or other structure and install the base mounting brackets as shown in the figure below. **NOTE:** The provided concrete screws may be used if the unit is being anchored to a concrete pad or slab. If the unit is mounted on a built-up roof or other appropriate structure or framework, the provided 2" sheet metal screws may be used. 3. Install two anchors on each side of the corners of the unit as
- shown for split-system AC/HP models (below). IMPORTANT: The screws used in this kit must be properly installed so that the head of the fastener engages the bracket and anchors it securely.

PRODUCT CERTIFICATION

The test data, instructions, and contents of the "high-wind" mounting kits for anchoring Model (*)S3, (*)S4, (*)S5, (*)SA2, (*)SA4, (*)S6, RSN13, RSG13, & RSG14 Air Conditioners and (*)T3, (*)T4, (*)T5, (*)T6, (*)SH2, (*)SH4, HRN13, HRG13, & HRG14 heat pumps have been reviewed and these findings have been established:

- The mounting kit clips allow the designated units to resist a 180 MPH wind speed when fastened to an adequately designed hard concrete or metal support (stand) in accordance with provided instructions.
- The acceptable anchoring fasteners include 1/4" TapconsTM with 1 1/2" embedment into concrete and #14 x 2" sheet metal screws, one through each clip and into mating metal support.
- The technical study was based upon Section 1620 of the Florida Building Code, 5th Edition (2014), 3 second gust wind speed, and an exposure to category "C"
- This installation is approved for units on buildings with a height less than or equal to 250 ft.

NOTE: Copies of the Installation Instructions included with the kit are not stamped. If the local Mechanical Inspection office does not have a stamped copy of this Installation Instruction on file, one may be obtained from the manufacturer of this kit. Contact the distributor where this kit was purchased.

CONDITIONS:

Ultimate design wind speed (3 second gust) = 180 MPH Maximum heigh of unit installation = 250 feet

The covered units are all less than 30.75" wide and long, less than 45" tall, and less than 301 lbs. NOTE: (*) MAY BE REPLACED BY A CHARACTER DENOTING A BRAND/STYLE

MODEL NUMBER
(*)S4BD SERIES
(*)S4BE SERIES
(*)S4BF SERIES
(*)S4BG SERIES
(*)S4BI SERIES
(*)S5BD SERIES
(*)S6BF SERIES
(*)SA4BD SERIES
(*)SA4BE SERIES
(*)SA4BF SERIES
(*)SA4BG SERIES
(*)SA4BI SERIES
(*)SH4BD SERIES
(*)SH4BE SERIES
(*)SH4BF SERIES
(*)T4BD SERIES
(*)T4BE SERIES
(*)T4BF SERIES
(*)T5BD SERIES
(*)T6BE SERIES
FT4BG SERIES
FT4BI SERIES
HRG13 SERIES
HRG14 SERIES
HRG16 SERIES
HRN13 SERIES
PSH4BG SERIES
PSH4BI SERIES
RSG13 SERIES
RSG14 SERIES
RSG16 SERIES
RSN13 SERIES

EACH OF THE UNITS LISTED BELOW CONFORM TO THE REQUIREMENTS OF THE 5TH EDITION OF THE FLORIDA BUILDING CODE (2014) AND ASCE 7-10. IF THE HIGH WIND KIT IS PROPERLY INSTALLED THE UNIT WILL REMAIN FASTENED TO THE SLAB OR APPROPRIATE METAL SUPPORT (STAND) AND WILL ALSO NOT LOSE IT'S STRUCTURAL INTEGRITY AND BECOME WINDBORNE DEBRIS IF EXPOSED TO THE FOLLOWING

Coefficient Definitions

FBC Ref.	7					
1620.2	Ultimate design wind speed (mph)	V _{ult}	180			
1609.3.1	Nominal design wind speed	Vasd	139			
				-		
1609.4.3	Exposure Category	С]			
			1			
1609.6.2	Wind Stagnation Pressure	q _s	82.9]		
1609.6.4.2	velocity pressure exposure coefficient	Kz	=	2.01((z/zg)^(2/a))	Τ-	1.53
1003.0.4.2	height above ground (ft)	Z	- 250			1.55
		Z Zg	900	-		
		g a	9.5			
		a	9.5	J		
1609.6.4.2	Topographic factor*	K _{zt}	=	(1+(K1*K2*K3))^3	=	1.06
	Height of Hill (ft)	H	60			
	Distance upwind of crest to half hill height (ft)	L _h	30	-		
	Distance from the crest to the building (ft)	x	90	-		
	Height above local ground level (ft)	z	27			
	*worst case			1		
		K ₁	0.72			
		K ₂	0.25			
		K ₃	0.11			
6 5 3(6) ASCE 7	7 Enclosure Classification	Partiall		heed	Т	
0.0.0(0) ACCE		i urtiuli	y Enor		Т	
					_	
1609.6.4.3	Net Pressure Coefficient	C _{net,h}		Square (Wind Normal to Face))	
		C _{net,v}	0.97	Partially Enclosed Flat Roof		
r		1		T	—	
1609.6.3	Wind Pressure (psf)	P _{net,horiz}	=	$q_s K_z C_{net,h} K_{zt}$		134
		P _{net,vert}	=	$q_s K_z C_{net,v} K_{zt}$	=	131
Roof Mount On	<u>ly Coefficients</u>					
6.5.3(1) ASCE 7	wind directionality factor	K _d	1			
			•	-		
		г	r —	Ι	<u> </u>	
6.5.3(9) ASCE 7	Velocity Pressure (psf)	qz	=	.00256*K _z *K _{zt} *K _d *(V^2)	=	135
Load Combinat	ions					
	0.6D _L + 0.6W _L + H	(Equal)	ion 10	15)		
1605.3.1	0.00 + 0.00 + Π	(Equat	01110	- 15)		

 D_L

 H_{L}

 F_L

 W_{L}

=

=

=

=

Weight of unit

0

0

 $F_w + F_L$

Calculate Centroid of unit (force from wind) (Figure 1)

Y	<pre>/ =</pre>	(H-2.25)	(W)	((H-2.5) / 2 + 2.25)	+
		(H-2.25)	(W)		+
Y		(W*(H^2)) / 2	2) - 9.62]
		(W*H - 8.55)		-	
		, ,			1
Case 1:	PSH4BF	060KA			Case 2:
where		_			
W ₁ (in)	30.75				W ₂ (in)
H ₁ (in)	45				H ₂ (in)
		-			
Y ₁ (in)	22.6329]			Y ₂ (in)
		1			
CASE 1: Gro	und Mour	ted Units		4	
			ocitv of 1	80 MPH (Figure 2)	
				(3))	
Fw	=	P _{net} * A		7	
HORIZONTA	L FORCE			<u> </u>	
where					where
P _{net,horiz} (psf)	133.67]			P _{net,horiz} (psf)
A _{1,H} (sqft)	9.61				A _{2,H} (sqft)
	1	1		I	

F _{w 1} (lbf)	1285
1 _{W,1} (IBI)	1205

6.57

VERTICAL FORCE (LIFT)

P_{net,vert} (psf) 130.97

where

A_{1,H} (sqft)

F_{W,2} (lbf)

where	
P _{net,vert}	(psf
A _{2,H} (so	qft)

F_{L,2} (lbf)

F_{L,1} (lbf) 860

Calculate Lifting Force on Side of Unit (Figure 3) Unit consists of 2 Anchors per side

Load Combination

In the vertical direction, the load combination reduces to the weight of the unit and the lift force (Wt and F^{L)} In the horizontal direction, the load combination reduces to just F^W.

Мо	= (0.6	6W _t -0.6*F _L)*(D) + (W-1.9)(N	*Fa) - (0.6*Fw)*Y = 0	
Fa	₌ (0.	6*F _w *Y) - ((0.6Wt-0.6*F _L))*D))	
		N(W - 1.9)		
where				
Wt ₁ (lb)	301			Wt ₂ (lb)
D ₁ (in)	13.475			D ₂ (in)
Ν	2			Ν
Force per sci	rew:			Force per se
Fa ₁ (lbf)	381	< 505 lbf allowable		Fa ₂ (lbf)

Therefore, Two 1/4"x1 3/4" Tapcon screws per side are sufficient to secure a ground mounted split unit.

2

Dead Loads (lb)

Fluid Loads (lb)

Wind Loads (lb)

Lateral Earth Loads (lb)

(2.25)	(W - 3.8)	(2.25 / 2)	
(2.25)	(W - 3.8)		

JS5BD-018KA
22.75
23
11.67

133.67
3.63

486

130.97
3.59

sum of moments = 0

crew: 132 < 505lb allowable

CASE 2: Roof Mounted Units (Updated Per 1609.8)

Calculate Horizontal Force from wind with velocity of 180 MPH On Roof Mounted Unit (Figure 4)

Determine number	etermine number of #14 1/4"x2" Sheet Metal Screws Necessary to Handle the Load			
Material:	C1016-C1022			
Yield Strength (psi)	90,000	approx. value from supplier	d (in)	0.251
Ult. Strength (psi)	120,000	approx. value from supplier	Fos	4

	F_{-}	F_A
$\sigma_{axial} =$	\overline{A} =	πd^2
		$n_{\overline{4}}$

Determine number of screws needed per side to not fail in yielding with a factor of safety of 4.0

Therefore, 2 #14 screws are needed to secure the largest units to the stand in rooftop applications. Do not apply the screws to the unit's coil.

CASE 3: Unit integrity failure due to Wind Load (FMC 301.15)

Maximum uplift force seen by units is roof mounted. Failure is assumed to be separation of coil/jacket assembly from base mount.

The weight of the unit was neglected.

F _{screw} (lb)	153	
At #10 (in ²)	0.0143	

$$\tau_{screw} = \frac{V}{A} = \frac{F_{screw}}{A_t}$$

τ _{screw} (psi)	10666
Screw Mechanica	I Properties
Material:	C1016-C1024
Tensile Strength, Yield	52200
Shear Strength (psi)	31320

n

2.9

Therefore the unit can withstand the design forces without losing unit integrity.

 $F_{L,1}$ 760

There are 9 #10 screws per side that secure the coil/jacket to the base. They are in direct shear in the same axis F₁₁ is acting.

F_{screw} (lb) 84

At #10 (in²) 0.0143

$$\tau_{screw} = \frac{V}{A} = \frac{F_{screw}}{A_t}$$

τ _{screw} (psi)	5899	
Screw Mechanic	al Properties	
Material:	C1016-C1024	
Tensile Strength, Yiel	52200	
Shear Strength (psi)	31320	

$$n = \frac{\tau_{all}}{\tau_{max}}$$
n 5.3

Figure 1: Calculate Centroid

Figure 2: Calculate Wind Force

Figure 3: Calculate Lifting Force

Figure 4: Calculate Anchor Force For Roof Mounted Units

NOTE: Unit shown on generic mounting stand.

Tapcon Concrete Anchors		
Dimensions		
Diameter (in)		0.25
Embedment Depth (in)		1.75

Mechanical Properties		
Tension Strength*		
Concrete Grade	Tension	Allowable Tension (lbs)
2000 psi	2020	505
4000 psi	2380	595
5000 psi	2770	692

Shear Strength*		
Concrete Grade	Shear	Allowable Shear
2000 psi	1670	418
4000 psi	1670	418
5000 psi	1670	418

* Source:

http://www.concretefasteners.com/anchors-fasteners/tapcon-screw/technical-specifications.aspx

Screw Material

C1022 Case Harden per SAE-J933

Force required to yield in tension, per screw (lbs)	747	Top Pan Area = 210sq.in
Force required to yield in shear, per screw (lbs)	448	
Application		
Area of Top Pan (sq.in) (Figure 5)	210	
Roof Design Wind Pressure (psf)	134	
Force pulling on Top Pan, +Y (lbs)	195	
Shear force on each screw, qty 5 (lbs)	39	Figure 5

Screw Material

Minor Diameter of Screw (in) Area of screw at Minor Diameter (in²)

Tensile Strength, Yield (psi) Shear Strength (psi)

Force required to yield in tension, per screw (lbs) Force required to yield in shear, per screw (lbs)

ension
20 lbs
80 lbs
70 lbs

Shear Strengt	h
Concrete Grade	Shear
2000 psi	1670 lbs
4000 psi	1670 lbs
5000 psi	1670 lbs

Sheet metal Yield Strength (psi)

Shear area of sheet metal hole (in²)

C1022 Case Harden	per SAE-J933
-------------------	--------------

0.135 0.0143 52200 31320

747

448

65000

0.002290221

148.8643679

0.182 0.128

0.091 0.064

